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Cell membranes are crucial to the life of the cell. The plasma membrane encloses  IN THIS CHAPTER
the cell, defines its boundaries, and maintains the essential differences between
the cytosol and the extracellular environment. Inside eukaryotic cells, the mem-  THE | |PID BILAYER
branes of the nucleus, endoplasmic reticulum, Golgi apparatus, mitochondria,
and other membrane-enclosed organelles maintain the characteristic differences MEMBRANE PROTEINS
between the contents of each organelle and the cytosol. Ion gradients across
membranes, established by the activities of specialized membrane proteins, can
be used to synthesize ATP, to drive the transport of selected solutes across the
membrane, or, as in nerve and muscle cells, to produce and transmit electrical
signals. In all cells, the plasma membrane also contains proteins that act as sen-
sors of external signals, allowing the cell to change its behavior in response to
environmental cues, including signals from other cells; these protein sensors, or
receptors, transfer information—rather than molecules—across the membrane.
Despite their differing functions, all biological membranes have a common
general structure: each is a very thin film of lipid and protein molecules, held
together mainly by noncovalent interactions (Figure 10-1). Cell membranes

Figure 10-1 Two views of a cell membrane. (A) An electron
micrograph of a segment of the plasma membrane of a
human red blood cell seen in cross section, showing its bilayer
structure. (B) A three-dimensional schematic view of a cell
membrane and the general disposition of its lipid and protein
constituents. (A, courtesy of Daniel S. Friend.) (B)
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566 Chapter 10: Membrane Structure

are dynamic, fluid structures, and most of their molecules move about in the
plane of the membrane. The lipid molecules are arranged as a continuous dou-
ble layer about 5 nm thick. This lipid bilayer provides the basic fluid structure of
the membrane and serves as a relatively impermeable barrier to the passage of
most water-soluble molecules. Most membrane proteins span the lipid bilayer and
mediate nearly all of the other functions of the membrane, including the trans-
port of specific molecules across it, and the catalysis of membrane-associated
reactions such as ATP synthesis. In the plasma membrane, some transmembrane
proteins serve as structural links that connect the cytoskeleton through the lipid
bilayer to either the extracellular matrix or an adjacent cell, while others serve as
receptors to detect and transduce chemical signals in the cell’s environment. It
takes many kinds of membrane proteins to enable a cell to function and interact
with its environment, and it is estimated that about 30% of the proteins encoded
in an animal’s genome are membrane proteins.

In this chapter, we consider the structure and organization of the two main
constituents of biological membranes—the lipids and the proteins. Although
we focus mainly on the plasma membrane, most concepts discussed apply to
the various internal membranes of eukaryotic cells as well. The functions of cell
membranes are considered in later chapters: their role in energy conversion and
ATP synthesis, for example, is discussed in Chapter 14; their role in the transmem-
brane transport of small molecules in Chapter 11; and their roles in cell signaling
and cell adhesion in Chapters 15 and 19, respectively. In Chapters 12 and 13, we
discuss the internal membranes of the cell and the protein traffic through and
between them.

THE LIPID BILAYER

The lipid bilayer provides the basic structure for all cell membranes. It is easily
seen by electron microscopy, and its bilayer structure is attributable exclusively
to the special properties of the lipid molecules, which assemble spontaneously
into bilayers even under simple artificial conditions. In this section, we discuss
the different types of lipid molecules found in cell membranes and the general
properties of lipid bilayers.

Phosphoglycerides, Sphingolipids, and Sterols Are the Major
Lipids in Cell Membranes

Lipid molecules constitute about 50% of the mass of most animal cell membranes,
nearly all of the remainder being protein. There are approximately 5 x 10° lipid
molecules in a 1 pm x 1 um area of lipid bilayer, or about 10° lipid molecules in
the plasma membrane of a small animal cell. All of the lipid molecules in cell
membranes are amphiphilic—that is, they have a hydrophilic (“water-loving”) or
polar end and a hydrophobic (“water-fearing”) or nonpolar end.

The most abundant membrane lipids are the phospholipids. These have a
polar head group containing a phosphate group and two hydrophobic hydrocar-
bon tails. In animal, plant, and bacterial cells, the tails are usually fatty acids, and
they can differ in length (they normally contain between 14 and 24 carbon atoms).
One tail typically has one or more cis-double bonds (that is, it is unsaturated),
while the other tail does not (that is, it is saturated). As shown in Figure 10-2,
each cis-double bond creates a kink in the tail. Differences in the length and sat-
uration of the fatty acid tails influence how phospholipid molecules pack against
one another, thereby affecting the fluidity of the membrane, as we discuss later.

The main phospholipids in most animal cell membranes are the phospho-
glycerides, which have a three-carbon glycerol backbone (see Figure 10-2). Two
long-chain fatty acids are linked through ester bonds to adjacent carbon atoms
of the glycerol, and the third carbon atom of the glycerol is attached to a phos-
phate group, which in turn is linked to one of several types of head group. By
combining several different fatty acids and head groups, cells make many dif-
ferent phosphoglycerides. Phosphatidylethanolamine, phosphatidylserine, and
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phosphatidylcholine are the most abundant ones in mammalian cell membranes
(Figure 10-3A-C).

Another important class of phospholipids are the sphingolipids, which are built
from sphingosine rather than glycerol (Figure10-3D-E). Sphingosine is a long acyl
chain with an amino group (NHz) and two hydroxyl groups (OH) at one end. In
sphingomyelin, the most common sphingolipid, a fatty acid tail is attached to the
amino group, and a phosphocholine group is attached to the terminal hydroxyl
group. Together, the phospholipids phosphatidylcholine, phosphatidylethanol-
amine, phosphatidylserine, and sphingomyelin constitute more than half the
mass of lipid in most mammalian cell membranes (see Table 10-1, p. 571).
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Figure 10-2 The parts of a typical
phospholipid molecule. This example
is a phosphatidylcholine, represented (A)
schematically, (B) by a formula, (C) as a
space-filing model (Movie 10.1), and
(D) as a symbol.

Figure 10-3 Four major phospholipids in
mammalian plasma membranes. Different
head groups are represented by different
colors in the symbols. The lipid molecules
shown in (A-C) are phosphoglycerides,
which are derived from glycerol. The
molecule in (D) is sphingomyelin, which

is derived from sphingosine (E) and is
therefore a sphingolipid. Note that only
phosphatidylserine carries a net negative
charge, the importance of which we discuss
later; the other three are electrically neutral at
physiological pH, carrying one positive and
one negative charge.
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In addition to phospholipids, the lipid bilayers in many cell membranes con-
tain glycolipids and cholesterol. Glycolipids resemble sphingolipids, but, instead
of a phosphate-linked head group, they have sugars attached. We discuss glyco-
lipids later. Eukaryotic plasma membranes contain especially large amounts of
cholesterol—up to one molecule for every phospholipid molecule. Cholesterol
is a sterol. It contains a rigid ring structure, to which is attached a single polar
hydroxyl group and a short nonpolar hydrocarbon chain (Figure 10-4). The cho-
lesterol molecules orient themselves in the bilayer with their hydroxyl group close
to the polar head groups of adjacent phospholipid molecules (Figure 10-5).

Phospholipids Spontaneously Form Bilayers

The shape and amphiphilic nature of the phospholipid molecules cause them to
form bilayers spontaneously in aqueous environments. As discussed in Chapter
2, hydrophilic molecules dissolve readily in water because they contain charged
groups or uncharged polar groups that can form either favorable electrostatic
interactions or hydrogen bonds with water molecules (Figure 10-6A). Hydro-
phobic molecules, by contrast, are insoluble in water because all, or almost all,
of their atoms are uncharged and nonpolar and therefore cannot form energeti-
cally favorable interactions with water molecules. If dispersed in water, they force
the adjacent water molecules to reorganize into icelike cages that surround the
hydrophobic molecule (Figure 10-6B). Because these cage structures are more
ordered than the surrounding water, their formation increases the free energy.
This free-energy cost is minimized, however, if the hydrophobic molecules (or
the hydrophobic portions of amphiphilic molecules) cluster together so that the
smallest number of water molecules is affected.

When amphiphilic molecules are exposed to an aqueous environment, they
behave as you would expect from the above discussion. They spontaneously
aggregate to bury their hydrophobic tails in the interior, where they are shielded
from the water, and they expose their hydrophilic heads to water. Depending
on their shape, they can do this in either of two ways: they can form spherical
micelles, with the tails inward, or they can form double-layered sheets, or bilay-
ers, with the hydrophobic tails sandwiched between the hydrophilic head groups
(Figure 10-7).

The same forces that drive phospholipids to form bilayers also provide a
self-sealing property. A small tear in the bilayer creates a free edge with water;
because this is energetically unfavorable, the lipids tend to rearrange sponta-
neously to eliminate the free edge. (In eukaryotic plasma membranes, the fusion
of intracellular vesicles repairs larger tears.) The prohibition of free edges has a
profound consequence: the only way for a bilayer to avoid having edges is by clos-
ing in on itself and forming a sealed compartment (Figure 10-8). This remarkable

Figure 10-4 The structure of cholesterol.
Cholesterol is represented (A) by a formula,
(B) by a schematic drawing, and (C) as a

space-filing model.

nm

Figure 10-5 Cholesterol in a lipid
bilayer. Schematic drawing (to scale) of a
cholesterol molecule interacting with two

phospholipid molecules in one monolayer

of a lipid bilayer.
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behavior, fundamental to the creation of a living cell, follows directly from the
shape and amphiphilic nature of the phospholipid molecule.

A lipid bilayer also has other characteristics that make it an ideal structure for
cell membranes. One of the most important of these is its fluidity, which is crucial
to many membrane functions (Movie 10.2).

The Lipid Bilayer Is a Two-dimensional Fluid

Around 1970, researchers first recognized that individual lipid molecules are able
to diffuse freely within the plane of a lipid bilayer. The initial demonstration came
from studies of synthetic (artificial) lipid bilayers, which can be made in the form
of spherical vesicles, called liposomes (Figure 10-9); or in the form of planar
bilayers formed across a hole in a partition between two aqueous compartments
or on a solid support.

Various techniques have been used to measure the motion of individual lipid
molecules and their components. One can construct a lipid molecule, for exam-
ple, with a fluorescent dye or a small gold particle attached to its polar head group
and follow the diffusion of even individual molecules in a membrane. Alterna-
tively, one can modify a lipid head group to carry a “spin label,” such as a nitroxide
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Figure 10-7 Packing arrangements of amphiphilic molecules in an aqueous environment.
(A) These molecules spontaneously form micelles or bilayers in water, depending on their shape.
Cone-shaped amphiphilic molecules (above) form micelles, whereas cylinder-shaped amphiphilic
molecules such as phospholipids (below) form bilayers. (B) A micelle and a lipid bilayer seen in
cross section. Note that micelles of amphiphilic molecules are thought to be much more irregular
than drawn here (see Figure 10-26C).
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2-methylpropane in water

Figure 10-6 How hydrophilic and
hydrophobic molecules interact differently
with water. (A) Because acetone is polar,

it can form hydrogen bonds (red) and
favorable electrostatic interactions (yellow)
with water molecules, which are also polar.
Thus, acetone readily dissolves in water.

(B) By contrast, 2-methyl propane is entirely
hydrophobic. Because it cannot form
favorable interactions with water, it forces
adjacent water molecules to reorganize into
icelike cage structures, which increases the
free energy. This compound is therefore
virtually insoluble in water. The symbol

o~ indicates a partial negative charge, and
o* indicates a partial positive charge. Polar
atoms are shown in color and nonpolar
groups are shown in gray.

ENERGETICALLY UNFAVORABLE

planar phospholipid bilayer
with edges exposed to water

sealed compartment
formed by phospholipid
bilayer

ENERGETICALLY FAVORABLE

Figure 10-8 The spontaneous closure of
a phospholipid bilayer to form a sealed
compartment. The closed structure is
stable because it avoids the exposure of
the hydrophobic hydrocarbon tails to water,
which would be energetically unfavorable.
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Figure 10-9 Liposomes. (A) An electron micrograph of unfixed, unstained,
synthetic phosphoalipid vesicles—liposomes—in water, which have been
rapidly frozen at liquid-nitrogen temperature. (B) A drawing of a small
spherical liposome seen in cross section. Liposomes are commonly used as
model membranes in experimental studies, especially to study incorporated
membrane proteins. (A, from P. Frederik and D. Hubert, Methods Enzymol.
391:431-448, 2005. With permission from Elsevier.)

group (=N-0); this contains an unpaired electron whose spin creates a paramag-
netic signal that can be detected by electron spin resonance (ESR) spectroscopy,
the principles of which are similar to those of nuclear magnetic resonance (NMR),
discussed in Chapter 8. The motion and orientation of a spin-labeled lipid in a
bilayer can be deduced from the ESR spectrum. Such studies show that phospho-
lipid molecules in synthetic bilayers very rarely migrate from the monolayer (also
called a leaflet) on one side to that on the other. This process, known as “flip-flop,”
occurs on a time scale of hours for any individual molecule, although cholesterol
is an exception to this rule and can flip-flop rapidly. In contrast, lipid molecules
rapidly exchange places with their neighbors within a monolayer (~107 times per
second). This gives rise to a rapid lateral diffusion, with a diffusion coefficient (D)
of about 10 cm?/sec, which means that an average lipid molecule diffuses the
length of a large bacterial cell (~2 um) in about 1 second. These studies have also
shown that individual lipid molecules rotate very rapidly about their long axis and
have flexible hydrocarbon chains. Computer simulations show that lipid mole-
cules in synthetic bilayers are very disordered, presenting an irregular surface of
variously spaced and oriented head groups to the water phase on either side of the
bilayer (Figure 10-10).

Similar mobility studies on labeled lipid molecules in isolated biological
membranes and in living cells give results similar to those in synthetic bilayers.
They demonstrate that the lipid component of a biological membrane is a two-di-
mensional liquid in which the constituent molecules are free to move laterally. As
in synthetic bilayers, individual phospholipid molecules are normally confined
to their own monolayer. This confinement creates a problem for their synthesis.
Phospholipid molecules are manufactured in only one monolayer of a membrane,
mainly in the cytosolic monolayer of the endoplasmic reticulum membrane. If
none of these newly made molecules could migrate reasonably promptly to the
noncytosolic monolayer, new lipid bilayer could not be made. The problem is
solved by a special class of membrane proteins called phospholipid translocators,
or flippases, which catalyze the rapid flip-flop of phospholipids from one mono-
layer to the other, as discussed in Chapter 12.

Despite the fluidity of the lipid bilayer, liposomes do not fuse spontaneously
with one another when suspended in water. Fusion does not occur because the
polar lipid head groups bind water molecules that need to be displaced for the
bilayers of two different liposomes to fuse. The hydration shell that keeps lipo-
somes apart also insulates the many internal membranes in a eukaryotic cell
and prevents their uncontrolled fusion, thereby maintaining the compartmen-
tal integrity of membrane-enclosed organelles. All cell membrane fusion events
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Figure 10-10 The mobility of
phospholipid molecules in an artificial
lipid bilayer. Starting with a model of 100
phosphatidylcholine molecules arranged

in a regular bilayer, a computer calculated
the position of every atom after 300
picoseconds of simulated time. From these
theoretical calculations, a model of the lipid
bilayer emerges that accounts for almost all
of the measurable properties of a synthetic
lipid bilayer, including its thickness,
number of lipid molecules per membrane
area, depth of water penetration, and
unevenness of the two surfaces. Note that
the tails in one monolayer can interact with
those in the other monolayer, if the tails

are long enough. (B) The different motions
of a lipid molecule in a bilayer. (A, based
on S.W. Chiu et al., Biophys. J. 69:1230-
1245, 1995. With permission from the
Biophysical Society.)
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are catalyzed by tightly regulated fusion proteins, which force appropriate mem-
branes into tight proximity, squeezing out the water layer that keeps the bilayers
apart, as we discuss in Chapter 13.

The Fluidity of a Lipid Bilayer Depends on Its Composition

The fluidity of cell membranes has to be precisely regulated. Certain membrane
transport processes and enzyme activities, for example, cease when the bilayer
viscosity is experimentally increased beyond a threshold level.

The fluidity of a lipid bilayer depends on both its composition and its tempera-
ture, as is readily demonstrated in studies of synthetic lipid bilayers. A synthetic
bilayer made from a single type of phospholipid changes from a liquid state to a
two-dimensional rigid crystalline (or gel) state at a characteristic temperature. This
change of state is called a phase transition, and the temperature at which it occurs
is lower (that is, the membrane becomes more difficult to freeze) if the hydrocar-
bon chains are short or have double bonds. A shorter chain length reduces the
tendency of the hydrocarbon tails to interact with one another, in both the same
and opposite monolayer, and cis-double bonds produce kinks in the chains that
make them more difficult to pack together, so that the membrane remains fluid at
lower temperatures (Figure 10-11). Bacteria, yeasts, and other organisms whose
temperature fluctuates with that of their environment adjust the fatty acid com-
position of their membrane lipids to maintain a relatively constant fluidity. As the
temperature falls, for instance, the cells of those organisms synthesize fatty acids
with more cis-double bonds, thereby avoiding the decrease in bilayer fluidity that
would otherwise result from the temperature drop.

Cholesterol modulates the properties of lipid bilayers. When mixed with phos-
pholipids, it enhances the permeability-barrier properties of the lipid bilayer.
Cholesterol inserts into the bilayer with its hydroxyl group close to the polar head
groups of the phospholipids, so that its rigid, platelike steroid rings interact with—
and partly immobilize—those regions of the hydrocarbon chains closest to the
polar head groups (see Figure 10-5 and Movie 10.3). By decreasing the mobility of
the first few CH; groups of the chains of the phospholipid molecules, cholesterol
makes the lipid bilayer less deformable in this region and thereby decreases the
permeability of the bilayer to small water-soluble molecules. Although choles-
terol tightens the packing of the lipids in a bilayer, it does not make membranes
any less fluid. At the high concentrations found in most eukaryotic plasma mem-
branes, cholesterol also prevents the hydrocarbon chains from coming together
and crystallizing.

Table 10-1 compares the lipid compositions of several biological membranes.
Note that bacterial plasma membranes are often composed of one main type
of phospholipid and contain no cholesterol. In archaea, lipids usually contain

Approximate Lipid Compositions of Different Cell Membranes
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Figure 10-11 The influence of cis-
double bonds in hydrocarbon chains.
The double bonds make it more difficult to
pack the chains together, thereby making
the lipid bilayer more difficult to freeze. In
addition, because the hydrocarbon chains
of unsaturated lipids are more spread
apart, lipid bilayers containing them are
thinner than bilayers formed exclusively

from saturated lipids.

Percentage of total lipid by weight

Liver cell Red blood Myelin Mitochondrion Endoplasmic

plasma cell plasma (inner and outer reticulum
Lipid membrane membrane membranes)
Cholesterol 17 23 22 3 6
Phosphatidylethanolamine 7 18 15 28 17
Phosphatidylserine 4 7 9 2 5
Phosphatidylcholine 24 17 10 44 40
Sphingomyelin 19 18 8 0 5
Glycolipids 7 3 28 trace trace
Others 22 14 8 23 27

E. coli
bacterium

70

trace

30
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20-25-carbon-long prenyl chains instead of fatty acids; prenyl and fatty acid
chains are similarly hydrophobic and flexible (see Figure 10-20F); in thermo-
philic archaea, the longest lipid chains span both leaflets, making the membrane
particularly stable to heat. Thus, lipid bilayers can be built from molecules with
similar features but different molecular designs. The plasma membranes of most
eukaryotic cells are more varied than those of prokaryotes and archaea, not only
in containing large amounts of cholesterol but also in containing a mixture of dif-
ferent phospholipids.

Analysis of membrane lipids by mass spectrometry has revealed that the lipid
composition of a typical eukaryotic cell membrane is much more complex than
originally thought. These membranes contain a bewildering variety of perhaps
500-2000 different lipid species with even the simple plasma membrane of a red
blood cell containing well over 150. While some of this complexity reflects the
combinatorial variation in head groups, hydrocarbon chain lengths, and desat-
uration of the major phospholipid classes, some membranes also contain many
structurally distinct minor lipids, atleast some of which have important functions.
The inositol phospholipids, for example, are present in small quantities in animal
cell membranes and have crucial functions in guiding membrane traffic and in
cell signaling (discussed in Chapters 13 and 15, respectively). Their local synthesis
and destruction are regulated by a large number of enzymes, which create both
small intracellular signaling molecules and lipid docking sites on membranes that
recruit specific proteins from the cytosol, as we discuss later.

Despite Their Fluidity, Lipid Bilayers Can Form Domains of Different
Compositions

Because a lipid bilayer is a two-dimensional fluid, we might expect most types
of lipid molecules in it to be well mixed and randomly distributed in their own
monolayer. The van der Waals attractive forces between neighboring hydrocarbon
tails are not selective enough to hold groups of phospholipid molecules together.
With certain lipid mixtures in artificial bilayers, however, one can observe phase
segregations in which specific lipids come together in separate domains (Figure
10-12).

There has been a long debate among cell biologists about whether the lipid
molecules in the plasma membrane of living cells similarly segregate into spe-
cialized domains, called lipid rafts. Although many lipids and membrane pro-
teins are not distributed uniformly, large-scale lipid phase segregations are rarely
seen in living cell membranes. Instead, specific membrane proteins and lipids are
seen to concentrate in a more temporary, dynamic fashion facilitated by protein-
protein interactions that allow the transient formation of specialized membrane
regions (Figure 10-13). Such clusters can be tiny nanoclusters on a scale of a few
molecules, or larger assemblies that can be seen with electron microscopy, such
as the caveolae involved in endocytosis (discussed in Chapter 13). The tendency
of mixtures of lipids to undergo phase partitioning, as seen in artificial bilayers
(see Figure 10-12), may help create rafts in living cell membranes—organizing
and concentrating membrane proteins either for transport in membrane vesicles

5um

Figure 10-12 Lateral phase separation
in artificial lipid bilayers. (A) Giant
liposomes produced from a 1:1 mixture

of phosphatidylcholine and sphingomyelin
form uniform bilayers. (B) By contrast,
liposomes produced from a 1:1:1 mixture
of phosphatidylcholine, sphingomyelin,
and cholesterol form bilayers with two
separate phases. The liposomes are
stained with trace concentrations of a
fluorescent dye that preferentially partitions
into one of the two phases. The average
size of the domains formed in these giant
artificial liposomes is much larger than that
expected in cell membranes, where “lipid
rafts” (see text) may be as small as a few
nanometers in diameter. (A, from N. Kahya
etal., J. Struct. Biol. 147:77-89, 2004.
With permission from Elsevier; B, courtesy
of Petra Schwille.)
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(discussed in Chapter 13) or for working together in protein assemblies, such
as when they convert extracellular signals into intracellular ones (discussed in
Chapter 15).

Lipid Droplets Are Surrounded by a Phospholipid Monolayer

Most cells store an excess of lipids in lipid droplets, from where they can be
retrieved as building blocks for membrane synthesis or as a food source. Fat
cells, or adipocytes, are specialized for lipid storage. They contain a giant lipid
droplet that fills up most of their cytoplasm. Most other cells have many smaller
lipid droplets, the number and size varying with the cell’s metabolic state. Fatty
acids can be liberated from lipid droplets on demand and exported to other cells
through the bloodstream. Lipid droplets store neutral lipids, such as triacylglycer-
ols and cholesterol esters, which are synthesized from fatty acids and cholesterol
by enzymes in the endoplasmic reticulum membrane. Because these lipids do not
contain hydrophilic head groups, they are exclusively hydrophobic molecules,
and therefore aggregate into three-dimensional droplets rather than into bilayers.

Lipid droplets are unique organelles in that they are surrounded by a single
monolayer of phospholipids, which contains a large variety of proteins. Some of
the proteins are enzymes involved in lipid metabolism, but the functions of most
are unknown. Lipid droplets form rapidly when cells are exposed to high con-
centrations of fatty acids. They are thought to form from discrete regions of the
endoplasmic reticulum membrane where many enzymes of lipid metabolism are
concentrated. Figure 10-14 shows one model of how lipid droplets may form and
acquire their surrounding monolayer of phospholipids and proteins.

The Asymmetry of the Lipid Bilayer Is Functionally Important

The lipid compositions of the two monolayers of the lipid bilayer in many mem-
branes are strikingly different. In the human red blood cell (erythrocyte) mem-
brane, for example, almost all of the phospholipid molecules that have cho-
line—(CH3)3N*CHo,CH,OH—in their head group (phosphatidylcholine and

triacylglycerols and
cholesterol esters

phospholipid
monolayer

P

associated proteins
phospholipid
bilayer [

endoplasmic reticulum
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Figure 10-13 A model of a raft domain.
Weak protein—protein, protein-lipid, and
lipid—lipid interactions reinforce one another
to partition the interacting components into
raft domains. Cholesterol, sphingolipids,
glycolipids, glycosylphosphatidylinositol
(GPI)-anchored proteins, and some
transmembrane proteins are enriched

in these domains. Note that because of
their composition, raft domains have an
increased membrane thickness.We discuss
glycolipids, GPI-anchored proteins, and
oligosaccharide linkers later. (Adapted

from D. Lingwood and K. Simons, Science
327:46-50, 2010.)

Figure 10-14 A model for the formation of
lipid droplets. Neutral lipids are deposited
between the two monolayers of the
endoplasmic reticulum membrane. There,
they aggregate into a three-dimensional
droplet, which buds and pinches off from
the endoplasmic reticulum membrane as

a unigue organelle, surrounded by a single
monolayer of phospholipids and associated
proteins. (Adapted from S. Martin and R.G.
Parton, Nat. Rev. Mol. Cell Biol. 7:373-378,
2006. With permission from Macmillan
Publishers Ltd.)
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sphingomyelin) are in the outer monolayer, whereas almost all that contain a
terminal primary amino group (phosphatidylethanolamine and phosphatidylser-
ine) are in the inner monolayer (Figure 10-15). Because the negatively charged
phosphatidylserine is located in the inner monolayer, there is a significant dif-
ference in charge between the two halves of the bilayer. We discuss in Chapter 12
how membrane-bound phospholipid translocators generate and maintain lipid
asymmetry.

Lipid asymmetry is functionally important, especially in converting extra-
cellular signals into intracellular ones (discussed in Chapter 15). Many cytosolic
proteins bind to specific lipid head groups found in the cytosolic monolayer of
the lipid bilayer. The enzyme protein kinase C (PKC), for example, which is acti-
vated in response to various extracellular signals, binds to the cytosolic face of the
plasma membrane, where phosphatidylserine is concentrated, and requires this
negatively charged phospholipid for its activity.

In other cases, specific lipid head groups must first be modified to create pro-
tein-binding sites at a particular time and place. One example is phosphatidyli-
nositol (PI), one of the minor phospholipids that are concentrated in the cytosolic
monolayer of cell membranes (see Figure 13-10A-C). Various lipid kinases can
add phosphate groups at distinct positions on the inositol ring, creating binding
sites that recruit specific proteins from the cytosol to the membrane. An important
example of such a lipid kinase is phosphoinositide 3-kinase (PI 3-kinase), which is
activated in response to extracellular signals and helps to recruit specific intracel-
lular signaling proteins to the cytosolic face of the plasma membrane (see Figure
15-53). Similar lipid kinases phosphorylate inositol phospholipids in intracellular
membranes and thereby help to recruit proteins that guide membrane transport.

Phospholipids in the plasma membrane are used in yet another way to con-
vert extracellular signals into intracellular ones. The plasma membrane contains
various phospholipases that are activated by extracellular signals to cleave spe-
cific phospholipid molecules, generating fragments of these molecules that act
as short-lived intracellular mediators. Phospholipase C, for example, cleaves an
inositol phospholipid in the cytosolic monolayer of the plasma membrane to gen-
erate two fragments, one of which remains in the membrane and helps activate
protein kinase C, while the other is released into the cytosol and stimulates the
release of Ca®* from the endoplasmic reticulum (see Figure 15-28).

Animals exploit the phospholipid asymmetry of their plasma membranes to
distinguish between live and dead cells. When animal cells undergo apoptosis (a
form of programmed cell death, discussed in Chapter 18), phosphatidylserine,
which is normally confined to the cytosolic (or inner) monolayer of the plasma
membrane lipid bilayer, rapidly translocates to the extracellular (or outer) mono-
layer. The phosphatidylserine exposed on the cell surface signals neighboring
cells, such as macrophages, to phagocytose the dead cell and digest it. The trans-
location of the phosphatidylserine in apoptotic cells is thought to occur by two
mechanisms:

1. The phospholipid translocator that normally transports this lipid from the
outer monolayer to the inner monolayer is inactivated.

2. A “scramblase” that transfers phospholipids nonspecifically in both direc-
tions between the two monolayers is activated.

Figure 10-15 The asymmetrical
distribution of phospholipids and
glycolipids in the lipid bilayer of human
red blood cells. The colors used for

the phospholipid head groups are those
introduced in Figure 10-3. In addition,
glycolipids are drawn with hexagonal

polar head groups (blue). Cholesterol (not
shown) is distributed roughly equally in both
monolayers.



THE LIPID BILAYER

Glycolipids Are Found on the Surface of All Eukaryotic
Plasma Membranes

Sugar-containing lipid molecules called glycolipids have the most extreme asym-
metry in their membrane distribution: these molecules, whether in the plasma
membrane or in intracellular membranes, are found exclusively in the monolayer
facing away from the cytosol. In animal cells, they are made from sphingosine, just
like sphingomyelin (see Figure 10-3). These intriguing molecules tend to self-as-
sociate, partly through hydrogen bonds between their sugars and partly through
van der Waals forces between their long and straight hydrocarbon chains, which
causes them to partition preferentially into lipid raft phases (see Figure 10-13).
The asymmetric distribution of glycolipids in the bilayer results from the addi-
tion of sugar groups to the lipid molecules in the lumen of the Golgi apparatus.
Thus, the compartment in which they are manufactured is topologically equiv-
alent to the exterior of the cell (discussed in Chapter 12). As they are delivered
to the plasma membrane, the sugar groups are exposed at the cell surface (see
Figure 10-15), where they have important roles in interactions of the cell with its
surroundings.

Glycolipids probably occur in all eukaryotic cell plasma membranes, where
they generally constitute about 5% of the lipid molecules in the outer monolayer.
They are also found in some intracellular membranes. The most complex of the
glycolipids, the gangliosides, contain oligosaccharides with one or more sialic
acid moieties, which give gangliosides a net negative charge (Figure 10-16). The
most abundant of the more than 40 different gangliosides that have been iden-
tified are in the plasma membrane of nerve cells, where gangliosides constitute
5-10% of the total lipid mass; they are also found in much smaller quantities in
other cell types.

Hints as to the functions of glycolipids come from their localization. In the
plasma membrane of epithelial cells, for example, glycolipids are confined to the
exposed apical surface, where they may help to protect the membrane against
the harsh conditions frequently found there (such as low pH and high concen-
trations of degradative enzymes). Charged glycolipids, such as gangliosides, may
be important because of their electrical effects: their presence alters the electrical
field across the membrane and the concentrations of ions—especially Ca**—at
the membrane surface. Glycolipids also function in cell-recognition processes,
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Figure 10-16 Glycolipid molecules.

(A) Galactocerebroside is called a neutral
glycolipid because the sugar that forms its
head group is uncharged. (B) A ganglioside
always contains one or more negatively
charged sialic acid moiety. There are
various types of sialic acid; in human cells,
it is mostly N-acetylneuraminic acid, or
NANA), whose structure is shown in (C).
Whereas in bacteria and plants almost all
glycolipids are derived from glycerol, as are
most phospholipids, in animal cells almost
all glycolipids are based on sphingosine, as
is the case for sphingomyelin (see Figure
10-3). Gal = galactose; Glc = glucose,
GalNAc = N-acetylgalactosamine; these
three sugars are uncharged.
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in which membrane-bound carbohydrate-binding proteins (lectins) bind to the
sugar groups on both glycolipids and glycoproteins in the process of cell-cell
adhesion (discussed in Chapter 19). Mutant mice that are deficient in all of their
complex gangliosides show abnormalities in the nervous system, including axo-
nal degeneration and reduced myelination.

Some glycolipids provide entry points for certain bacterial toxins and viruses.
The ganglioside Gy (see Figure 10-16), for example, acts as a cell-surface recep-
tor for the bacterial toxin that causes the debilitating diarrhea of cholera. Cholera
toxin binds to and enters only those cells that have Gyy; on their surface, including
intestinal epithelial cells. Its entry into a cell leads to a prolonged increase in the
concentration of intracellular cyclic AMP (discussed in Chapter 15), which in turn
causes a large efflux of Cl-, leading to the secretion of Na*, K*, HCO3~, and water
into the intestine. Polyomaviruses also enter the cell after binding initially to gan-
gliosides.

Summary

Biological membranes consist of a continuous double layer of lipid molecules in
which membrane proteins are embedded. This lipid bilayer is fluid, with individual
lipid molecules able to diffuse rapidly within their own monolayer. The membrane
lipid molecules are amphiphilic. When placed in water, they assemble sponta-
neously into bilayers, which form sealed compartments.

Although cell membranes can contain hundreds of different lipid species, the
plasma membrane in animal cells contains three major classes—phospholipids,
cholesterol, and glycolipids. Because of their different backbone structure, phos-
pholipids fall into two subclasses—phosphoglycerides and sphingolipids. The lipid
compositions of the inner and outer monolayers are different, reflecting the different
functions of the two faces of a cell membrane. Different mixtures of lipids are found
in the membranes of cells of different types, as well as in the various membranes of
a single eukaryotic cell. Inositol phospholipids are a minor class of phospholipids,
which in the cytosolic leaflet of the plasma membrane lipid bilayer play an import-
ant part in cell signaling: in response to extracellular signals, specific lipid kinases
phosphorylate the head groups of these lipids to form docking sites for cytosolic sig-
naling proteins, whereas specific phospholipases cleave certain inositol phospho-
lipids to generate small intracellular signaling molecules.

MEMBRANE PROTEINS

Although the lipid bilayer provides the basic structure of biological membranes,
the membrane proteins perform most of the membrane’s specific tasks and
therefore give each type of cell membrane its characteristic functional properties.
Accordingly, the amounts and types of proteins in a membrane are highly vari-
able. In the myelin membrane, which serves mainly as electrical insulation for
nerve-cell axons, less than 25% of the membrane mass is protein. By contrast, in
the membranes involved in ATP production (such as the internal membranes of
mitochondria and chloroplasts), approximately 75% is protein. A typical plasma
membrane is somewhere in between, with protein accounting for about half of its
mass. Because lipid molecules are small compared with protein molecules, how-
ever, there are always many more lipid molecules than protein molecules in cell
membranes—about 50 lipid molecules for each protein molecule in cell mem-
branes that are 50% protein by mass. Membrane proteins vary widely in structure
and in the way they associate with the lipid bilayer, which reflects their diverse
functions.

Membrane Proteins Can Be Associated with the Lipid Bilayer in
Various Ways

Figure 10-17 shows the different ways in which proteins can associate with the
membrane. Like their lipid neighbors, membrane proteins are amphiphilic,
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having hydrophobic and hydrophilic regions. Many membrane proteins extend
through the lipid bilayer, and hence are called transmembrane proteins, with
part of their mass on either side (Figure 10-17, examples 1, 2, and 3). Their hydro-
phobic regions pass through the membrane and interact with the hydrophobic
tails of the lipid molecules in the interior of the bilayer, where they are seques-
tered away from water. Their hydrophilic regions are exposed to water on either
side of the membrane. The covalent attachment of a fatty acid chain that inserts
into the cytosolic monolayer of the lipid bilayer increases the hydrophobicity of
some of these transmembrane proteins (see Figure 10-17, example 1).

Other membrane proteins are located entirely in the cytosol and are attached
to the cytosolic monolayer of the lipid bilayer, either by an amphiphilic a helix
exposed on the surface of the protein (Figure 10-17, example 4) or by one or more
covalently attached lipid chains (Figure 10-17, example 5). Yet other membrane
proteins are entirely exposed at the external cell surface, being attached to the lipid
bilayer only by a covalent linkage (via a specific oligosaccharide) to a lipid anchor
in the outer monolayer of the plasma membrane (Figure 10-17, example 6).

The lipid-linked proteins in example 5 in Figure 10-17 are made as soluble pro-
teins in the cytosol and are subsequently anchored to the membrane by the cova-
lent attachment of the lipid group. The proteins in example 6, however, are made
as single-pass membrane proteins in the endoplasmic reticulum (ER). While
still in the ER, the transmembrane segment of the protein is cleaved off and a
glycosylphosphatidylinositol (GPI) anchor is added, leaving the protein bound
to the noncytosolic surface of the ER membrane solely by this anchor (discussed
in Chapter 12); transport vesicles eventually deliver the protein to the plasma
membrane (discussed in Chapter 13).

By contrast to these examples, membrane-associated proteins do not extend
into the hydrophobic interior of the lipid bilayer at all; they are instead bound to
either face of the membrane by noncovalent interactions with other membrane
proteins (Figure 10-17, examples 7 and 8). Many of the proteins of this type can
be released from the membrane by relatively gentle extraction procedures, such
as exposure to solutions of very high or low ionic strength or of extreme pH, which
interfere with protein-protein interactions but leave the lipid bilayer intact; these
proteins are often referred to as peripheral membrane proteins. Transmembrane
proteins and many proteins held in the bilayer by lipid groups or hydrophobic
polypeptide regions that insert into the hydrophobic core of the lipid bilayer can-
not be released in these ways.

Lipid Anchors Control the Membrane Localization of Some
Signaling Proteins

How a membrane protein is associated with the lipid bilayer reflects the func-
tion of the protein. Only transmembrane proteins can function on both sides of
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Figure 10-17 Various ways in which
proteins associate with the lipid bilayer.
Most membrane proteins are thought to
extend across the bilayer as (1) a single

a helix, (2) as multiple a helices, or (3)

as a rolled-up P sheet (a B barrel). Some
of these “single-pass” and “multipass”
proteins have a covalently attached

fatty acid chain inserted in the cytosolic
lipid monolayer (1). Other membrane
proteins are exposed at only one side

of the membrane. (4) Some of these are
anchored to the cytosolic surface by an
amphiphilic a helix that partitions into the
cytosolic monolayer of the lipid bilayer
through the hydrophobic face of the helix.
(5) Others are attached to the bilayer solely
by a covalently bound lipid chain—either
a fatty acid chain or a prenyl group (see
Figure 10-18)—in the cytosolic monolayer
or, (6) via an oligosaccharide linker, to
phosphatidylinositol in the noncytosolic
monolayer—called a GPI anchor. (7, 8)
Finally, membrane-associated proteins
are attached to the membrane only

by noncovalent interactions with other
membrane proteins. The way in which
the structure in (5) is formed is illustrated
in Figure 10-18, while the way in which
the GPI anchor shown in (6) is formed is
illustrated in Figure 12-52. The details

of how membrane proteins become
associated with the lipid bilayer are
discussed in Chapter 12.
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the bilayer or transport molecules across it. Cell-surface receptors, for example,
are usually transmembrane proteins that bind signal molecules in the extracel-
lular space and generate different intracellular signals on the opposite side of the
plasma membrane. To transfer small hydrophilic molecules across a membrane,
a membrane transport protein must provide a path for the molecules to cross the
hydrophobic permeability barrier of the lipid bilayer; the molecular architecture
of multipass transmembrane proteins (Figure 10-17, examples 2 and 3) is ideally
suited for this task, as we discuss in Chapter 11.

Proteins that function on only one side of the lipid bilayer, by contrast, are
often associated exclusively with either the lipid monolayer or a protein domain
on that side. Some intracellular signaling proteins, for example, that help relay
extracellular signals into the cell interior are bound to the cytosolic half of the
plasma membrane by one or more covalently attached lipid groups, which can
be fatty acid chains or prenyl groups (Figure 10-18). In some cases, myristic acid,
a saturated 14-carbon fatty acid, is added to the N-terminal amino group of the
protein during its synthesis on a ribosome. All members of the Src family of cyto-
plasmic protein tyrosine kinases (discussed in Chapter 15) are myristoylated in
this way. Membrane attachment through a single lipid anchor is not very strong,
however, and a second lipid group is often added to anchor proteins more firmly
to a membrane. For most Src kinases, the second lipid modification is the attach-
ment of palmitic acid, a saturated 16-carbon fatty acid, to a cysteine side chain of
the protein. This modification occurs in response to an extracellular signal and
helps recruit the kinases to the plasma membrane. When the signaling pathway is
turned off, the palmitic acid is removed, allowing the kinase to return to the cyto-
sol. Other intracellular signaling proteins, such as the Ras family small GTPases
(discussed in Chapter 15), use a combination of prenyl group and palmitic acid
attachment to recruit the proteins to the plasma membrane.

Many proteins attach to membranes transiently. Some are classical peripheral
membrane proteins that associate with membranes by regulated protein-pro-
tein interactions. Others undergo a transition from soluble to membrane protein
by a conformational change that exposes a hydrophobic peptide or covalently
attached lipid anchor. Many of the small GTPases of the Rab protein family that
regulate intracellular membrane traffic (discussed in Chapter 13), for example,
switch depending on the nucleotide that is bound to the protein. In their GDP-
bound state they are soluble and free in the cytosol, whereas in their GTP-bound
state their lipid anchor is exposed and tethers them to membranes. They are
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Figure 10-18 Membrane protein
attachment by a fatty acid chain or a
prenyl group. The covalent attachment
of either type of lipid can help localize a
water-soluble protein to a membrane after
its synthesis in the cytosol. (A) A fatty acid
chain (myristic acid) is attached via an
amide linkage to an N-terminal glycine.

(B) A fatty acid chain (palmitic acid)

is attached via a thioester linkage to

a cysteine. (C) A prenyl chain (either
farnesyl or a longer geranylgeranyl chain)
is attached via a thioether linkage to a
cysteine residue that is initially located four
residues from the protein’s C-terminus.
After prenylation, the terminal three

amino acids are cleaved off, and the new
C-terminus is methylated before insertion
of the anchor into the membrane (not
shown). The structures of the lipid anchors
are shown below: (D) a myristoyl anchor
(derived from a 14-carbon saturated

fatty acid chain), (E) a palmitoyl anchor

(a 16-carbon saturated fatty acid chain),
and (F) a farnesyl anchor (a 15-carbon
unsaturated hydrocarbon chain).
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Figure 10-19 A segment of a membrane-spanning polypeptide chain
crossing the lipid bilayer as an a helix. Only the a-carbon backbone

of the polypeptide chain is shown, with the hydrophobic amino acids in
green and yellow. The polypeptide segment shown is part of the bacterial
photosynthetic reaction center, the structure of which was determined by
x-ray diffraction. (Based on data from J. Deisenhofer et al., Nature 318:618—
624, 1985, and H. Michel et al., EMBO J. 5:1149-1158, 1986.)

membrane proteins at one moment and soluble proteins at the next. Such highly
dynamic interactions greatly expand the repertoire of membrane functions.

In Most Transmembrane Proteins, the Polypeptide Chain Crosses
the Lipid Bilayer in an a-Helical Conformation

A transmembrane protein always has a unique orientation in the membrane. This
reflects both the asymmetric manner in which it is inserted into the lipid bilayer
in the ER during its biosynthesis (discussed in Chapter 12) and the different func-
tions of its cytosolic and noncytosolic domains. These domains are separated by
the membrane-spanning segments of the polypeptide chain, which contact the
hydrophobic environment of the lipid bilayer and are composed largely of amino
acids with nonpolar side chains. Because the peptide bonds themselves are polar
and because water is absent, all peptide bonds in the bilayer are driven to form
hydrogen bonds with one another. The hydrogen-bonding between peptide
bonds is maximized if the polypeptide chain forms a regular o helix as it crosses
the bilayer, and this is how most membrane-spanning segments of polypeptide
chains traverse the bilayer (Figure 10-19).

In single-pass transmembrane proteins, the polypeptide chain crosses only
once (see Figure 10-17, example 1), whereas in multipass transmembrane pro-
teins, the polypeptide chain crosses multiple times (see Figure 10-17, example 2).
An alternative way for the peptide bonds in the lipid bilayer to satisfy their hydro-
gen-bonding requirements is for multiple transmembrane strands of a polypep-
tide chain to be arranged as a [} sheet that is rolled up into a cylinder (a so-called
[ barrel; see Figure 10-17, example 3). This protein architecture is seen in the
porin proteins that we discuss later.

Progress in the x-ray crystallography of membrane proteins has enabled the
determination of the three-dimensional structure of many of them. The structures
confirm that it is often possible to predict from the protein’s amino acid sequence
which parts of the polypeptide chain extend across the lipid bilayer. Segments
containing about 20-30 amino acids, with a high degree of hydrophobicity, are
long enough to span a lipid bilayer as an a helix, and they can often be identified
in hydropathy plots (Figure 10-20). From such plots, it is estimated that about 30%
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Figure 10-20 Using hydropathy plots to
localize potential a-helical membrane-
spanning segments in a polypeptide
chain. The free energy needed to transfer
successive segments of a polypeptide
chain from a nonpolar solvent to water is
calculated from the amino acid composition
of each segment using data obtained from
model compounds. This calculation is
made for segments of a fixed size (usually
around 10-20 amino acids), beginning with
each successive amino acid in the chain.
The “hydropathy index” of the segment

is plotted on the Y axis as a function of

its location in the chain. A positive value
indicates that free energy is required for
transfer to water (i.e., the segment is
hydrophobic), and the value assigned is
an index of the amount of energy needed.
Peaks in the hydropathy index appear at
the positions of hydrophobic segments

in the amino acid sequence. (A and B)
Hydropathy plots for two membrane
proteins that are discussed later in this
chapter. Glycophorin (A) has a single
membrane-spanning a helix, and one
corresponding peak in the hydropathy
plot. Bacteriorhodopsin (B) has seven
membrane-spanning a helices and seven
corresponding peaks in the hydropathy
plot. (A, adapted from D. Eisenberg, Annu.
Rev. Biochem. 53:595-624, 1984. With
permission from Annual Reviews.)
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of an organism’s proteins are transmembrane proteins, emphasizing their impor-
tance. Hydropathy plots cannot identify the membrane-spanning segments of a
B barrel, as 10 amino acids or fewer are sufficient to traverse a lipid bilayer as an
extended p strand and only every other amino acid side chain is hydrophobic.

The strong drive to maximize hydrogen-bonding in the absence of water
means that a polypeptide chain that enters the lipid bilayer is likely to pass entirely
through it before changing direction, since chain bending requires a loss of reg-
ular hydrogen-bonding interactions. But multipass transmembrane proteins can
also contain regions that fold into the membrane from either side, squeezing into
spaces between transmembrane o helices without contacting the hydrophobic
core of the lipid bilayer. Because such regions interact only with other polypep-
tide regions, they do not need to maximize hydrogen-bonding; they can therefore
have a variety of secondary structures, including helices that extend only part way
across the lipid bilayer (Figure 10-21). Such regions are important for the func-
tion of some membrane proteins, including water channel and ion channel pro-
teins, in which the regions contribute to the walls of the pores traversing the mem-
brane and confer substrate specificity on the channels, as we discuss in Chapter
11. These regions cannot be identified in hydropathy plots and are only revealed
by x-ray crystallography or electron crystallography (a technique similar to x-ray
diffraction but performed on two-dimensional arrays of proteins) of the protein’s
three-dimensional structure.

Transmembrane o Helices Often Interact with One Another

The transmembrane a helices of many single-pass membrane proteins do not
contribute to the folding of the protein domains on either side of the membrane.
As a consequence, it is often possible to engineer cells to produce just the cyto-
solic or extracellular domains of these proteins as water-soluble molecules. This
approach has been invaluable for studying the structure and function of these
domains, especially the domains of transmembrane receptor proteins (discussed
in Chapter 15). A transmembrane o helix, even in a single-pass membrane pro-
tein, however, often does more than just anchor the protein to the lipid bilayer.
Many single-pass membrane proteins form homo- or heterodimers that are held
together by noncovalent, but strong and highly specific, interactions between the
two transmembrane o helices; the sequence of the hydrophobic amino acids of
these helices contains the information that directs the protein-protein interac-
tion.

Similarly, the transmembrane o helices in multipass membrane proteins
occupy specific positions in the folded protein structure that are determined by
interactions between the neighboring helices. These interactions are crucial for
the structure and function of the many channels and transporters that move mol-
ecules across cell membranes.

In these proteins, neighboring transmembrane helices in the folded structure
of the protein shield many of the other transmembrane helices from the mem-
brane lipids. Why, then, are these shielded helices nevertheless composed pri-
marily of hydrophobic amino acids? The answer lies in the way in which multi-
pass proteins are integrated into the membrane during their biosynthesis. As we
discuss in Chapter 12, transmembrane o helices are inserted into the lipid bilayer
sequentially by a protein translocator. After leaving the translocator, each helix
is transiently surrounded by lipids, which requires that the helix be hydropho-
bic. It is only as the protein folds up into its final structure that contacts are made
between adjacent helices, and protein-protein contacts replace some of the pro-
tein-lipid contacts (Figure 10-22).

Some B Barrels Form Large Channels

Multipass membrane proteins that have their transmembrane segments arranged
as [ barrels rather than as o helices are comparatively rigid and therefore tend
to form crystals readily when isolated. Thus, some of them were among the first

Figure 10-21 Two short a helices in the
aquaporin water channel, each of which
spans only halfway through the lipid
bilayer. In the plasma membrane, four
monomers, one of which is shown here,
form a tetramer. Each monomer has a
hydrophilic pore at its center, which allows
water molecules to cross the membrane
in single file (see Figure 11-20 and

Movie 11.6). The two short colored
helices are buried at an interface formed
by protein—protein interactions. The
mechanism by which the channel allows
the passage of water molecules is
discussed in more detail in Chapter 11.
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multipass membrane protein structures to be determined by x-ray crystallogra-
phy. The number of § strands in a [ barrel varies widely, from as few as 8 strands
to as many as 22 (Figure 10-23).

[-barrel proteins are abundant in the outer membranes of bacteria, mitochon-
dria, and chloroplasts. Some are pore-forming proteins, which create water-filled
channels that allow selected small hydrophilic molecules to cross the membrane.
The porins are well-studied examples (example 3 in Figure 10-23C). Many porin
barrels are formed from a 16-strand, antiparallel B sheet rolled up into a cylindri-
cal structure. Polar amino acid side chains line the aqueous channel on the inside,
while nonpolar side chains project from the outside of the barrel to interact with
the hydrophobic core of the lipid bilayer. Loops of the polypeptide chain often
protrude into the lumen of the channel, narrowing it so that only certain solutes
can pass. Some porins are therefore highly selective: maltoporin, for example,
preferentially allows maltose and maltose oligomers to cross the outer membrane
of E. coli.

The FepA protein is a more complex example of a § barrel transport protein
(Figure 10-23D). It transports iron ions across the bacterial outer membrane. It
is constructed from 22 [} strands, and a large globular domain completely fills the
inside of the barrel. Iron ions bind to this domain, which by an unknown mech-
anism moves or changes its conformation to transfer the iron across the mem-
brane.

Not all B-barrel proteins are transport proteins. Some form smaller barrels that
are completely filled by amino acid side chains that project into the center of the
barrel. These proteins function as receptors or enzymes (Figure 10-23A and B);
the barrel serves as a rigid anchor, which holds the protein in the membrane and
orients the cytosolic loops that form binding sites for specific intracellular mole-
cules.

Most multipass membrane proteins in eukaryotic cells and in the bacterial
plasma membrane are constructed from transmembrane o helices. The helices

(A) 8-stranded (B)

OmpA

12-stranded (@) 16-stranded
OMPLA porin

581

Figure 10-22 Steps in the folding of a
multipass transmembrane protein.

When a newly synthesized transmembrane
o helix is released into the lipid bilayer, it is
initially surrounded by lipid molecules. As
the protein folds, contacts between the
helices displace some of the lipid molecules
surrounding the helices.

Figure 10-23 B barrels formed from
different numbers of B strands.

(A) The E. coli OmpA protein serves as a
receptor for a bacterial virus. (B) The E. coli
OMPLA protein is an enzyme (a lipase) that
hydrolyzes lipid molecules. The amino acids
that catalyze the enzymatic reaction (shown
in red) protrude from the outside surface of
the barrel. (C) A porin from the bacterium
Rhodobacter capsulatus forms a water-
filled pore across the outer membrane.

The diameter of the channel is restricted

by loops (shown in blue) that protrude into
the channel. (D) The E. coli FepA protein
transports iron ions. The inside of the barrel
is completely filled by a globular protein
domain (shown in blue) that contains an
iron-binding site (not shown).

PERIPLASM

(D) 22-stranded
FepA
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Figure 10-24 A single-pass transmembrane protein. Note that the
polypeptide chain traverses the lipid bilayer as a right-handed a helix and that
the oligosaccharide chains and disulfide bonds are all on the noncytosolic
surface of the membrane. The sulfhydryl groups in the cytosolic domain

of the protein do not normally form disulfide bonds because the reducing
environment in the cytosol maintains these groups in their reduced (-SH)
form.

can slide against each other, allowing conformational changes in the protein that
can open and shut ion channels, transport solutes, or transduce extracellular
signals into intracellular ones. In B-barrel proteins, by contrast, hydrogen bonds
bind each 3 strand rigidly to its neighbors, making conformational changes within
the wall of the barrel unlikely.

Many Membrane Proteins Are Glycosylated

Most transmembrane proteins in animal cells are glycosylated. As in glycolip-
ids, the sugar residues are added in the lumen of the ER and the Golgi appara-
tus (discussed in Chapters 12 and 13). For this reason, the oligosaccharide chains
are always present on the noncytosolic side of the membrane. Another important
difference between proteins (or parts of proteins) on the two sides of the mem-
brane results from the reducing environment of the cytosol. This environment
decreases the likelihood that intrachain or interchain disulfide (S-S) bonds will
form between cysteines on the cytosolic side of membranes. These bonds form
on the noncytosolic side, where they can help stabilize either the folded structure
of the polypeptide chain or its association with other polypeptide chains (Figure
10-24).

Because the extracellular part of most plasma membrane proteins are glyco-
sylated, carbohydrates extensively coat the surface of all eukaryotic cells. These
carbohydrates occur as oligosaccharide chains covalently bound to membrane
proteins (glycoproteins) and lipids (glycolipids). They also occur as the polysac-
charide chains of integral membrane proteoglycan molecules. Proteoglycans,
which consist of long polysaccharide chains linked covalently to a protein core,
are found mainly outside the cell, as part of the extracellular matrix (discussed in
Chapter 19). But, for some proteoglycans, the protein core either extends across
the lipid bilayer or is attached to the bilayer by a glycosylphosphatidylinositol
(GPI) anchor.

The terms cell coat or glycocalyx are sometimes used to describe the carbohy-
drate-rich zone on the cell surface. This carbohydrate layer can be visualized by
various stains, such as ruthenium red (Figure 10-25A), as well as by its affinity for
carbohydrate-binding proteins called lectins, which can be labeled with a fluo-
rescent dye or some other visible marker. Although most of the sugar groups are
attached to intrinsic plasma membrane molecules, the carbohydrate layer also
contains both glycoproteins and proteoglycans that have been secreted into the
extracellular space and then adsorbed onto the cell surface (Figure 10-25B). Many
of these adsorbed macromolecules are components of the extracellular matrix, so
that the boundary between the plasma membrane and the extracellular matrix is
often not sharply defined. One of the many functions of the carbohydrate layer is
to protect cells against mechanical and chemical damage; it also keeps various
other cells at a distance, preventing unwanted cell-cell interactions.

The oligosaccharide side chains of glycoproteins and glycolipids are enor-
mously diverse in their arrangement of sugars. Although they usually contain
fewer than 15 sugars, the chains are often branched, and the sugars can be bonded
together by various kinds of covalent linkages—unlike the amino acids in a poly-
peptide chain, which are all linked by identical peptide bonds. Even three sugars
can be put together to form hundreds of different trisaccharides. Both the diversity
and the exposed position of the oligosaccharides on the cell surface make them
especially well suited to function in specific cell-recognition processes. As we dis-
cuss in Chapter 19, plasma-membrane-bound lectins that recognize specific oli-
gosaccharides on cell-surface glycolipids and glycoproteins mediate a variety of
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transient cell-cell adhesion processes, including those occurring in lymphocyte
recirculation and inflammatory responses (see Figure 19-28).

Membrane Proteins Can Be Solubilized and Purified in Detergents

In general, only agents that disrupt hydrophobic associations and destroy the
lipid bilayer can solubilize membrane proteins. The most useful of these for the
membrane biochemist are detergents, which are small amphiphilic molecules of
variable structure (Movie 10.4). Detergents are much more soluble in water than
lipids. Their polar (hydrophilic) ends can be either charged (ionic), as in sodium
dodecyl sulfate (SDS), or uncharged (nonionic), as in octylglucoside and Triton
(Figure 10-26A). At low concentration, detergents are monomeric in solution,
but when their concentration is increased above a threshold, called the critical
micelle concentration (CMC), they aggregate to form micelles (Figure 10-26B-D).
Above the CMC, detergent molecules rapidly diffuse in and out of micelles, keep-
ing the concentration of monomer in the solution constant, no matter how many
micelles are present. Both the CMC and the average number of detergent mol-
ecules in a micelle are characteristic properties of each detergent, but they also
depend on the temperature, pH, and salt concentration. Detergent solutions are
therefore complex systems and are difficult to study.

When mixed with membranes, the hydrophobic ends of detergents bind to the
hydrophobic regions of the membrane proteins, where they displace lipid mol-
ecules with a collar of detergent molecules. Since the other end of the detergent

583

Figure 10-25 The carbohydrate layer

on the cell surface. (A) This electron
micrograph of the surface of a lymphocyte
stained with ruthenium red emphasizes the
thick carbohydrate-rich layer surrounding
the cell. (B) The carbohydrate layer is made
up of the oligosaccharide side chains of
membrane glycolipids and membrane
glycoproteins and the polysaccharide
chains on membrane proteoglycans.

In addition, adsorbed glycoproteins,

and adsorbed proteoglycans (not

shown), contribute to the carbohydrate
layer in many cells. Note that all of the
carbohydrate is on the extracellular surface
of the membrane. (A, courtesy of Audrey
M. Glauert and G.M.W. Cook.)
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Figure 10-26 The structure and function of detergents. (A) Three commonly used detergents are sodium dodecyl sulfate
(SDS), an anionic detergent, and Triton X-100 and B-octylglucoside, two nonionic detergents. Triton X-100 is a mixture of
compounds in which the region in brackets is repeated between 9 and 10 times. The hydrophobic portion of each detergent is
shown in yellow, and the hydrophilic portion is shown in orange. (B) At low concentration, detergent molecules are monomeric
in solution. As their concentration is increased beyond the critical micelle concentration (CMC), some of the detergent molecules
form micelles. Note that the concentration of detergent monomer stays constant above the CMC. (C) Because they have both
polar and nonpolar ends, detergent molecules are amphiphilic; and because they are cone-shaped, they form micelles rather
than bilayers (see Figure 10-7). Detergent micelles are thought to have irregular shapes, and, due to packing constraints,

the hydrophobic tails are partially exposed to water. (D) The space-filing model shows the structure of a micelle composed

of 20 B-octylglucoside molecules, predicted by molecular dynamics calculations. The head groups are shown in red and the
hydrophobic tails in gray. (B, adapted from G. Gunnarsson, B. Jonsson and H. Wennerstrém, J. Phys. Chem. 84:3114-3121,
1980; C, from S. Bogusz, R.M. Venable and R.W. Pastor, J. Phys. Chem. B 104:5462-5470, 2000.)

molecule is polar, this binding tends to bring the membrane proteins into solution
as detergent-protein complexes (Figure 10-27). Usually, some lipid molecules
also remain attached to the protein.

Strong ionic detergents, such as SDS, can solubilize even the most hydropho-
bic membrane proteins. This allows the proteins to be analyzed by SDS polyacry!-
amide-gel electrophoresis (discussed in Chapter 8), a procedure that has revolu-
tionized the study of proteins. Such strong detergents, however, unfold (denature)
proteins by binding to their internal “hydrophobic cores,” thereby rendering the
proteins inactive and unusable for functional studies. Nonetheless, proteins can
be readily separated and purified in their SDS-denatured form. In some cases,
removal of the SDS allows the purified protein to renature, with recovery of func-
tional activity.

Many membrane proteins can be solubilized and then purified in an active
form by the use of mild detergents. These detergents cover the hydrophobic
regions on membrane-spanning segments that become exposed after lipid
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removal but do not unfold the protein. If the detergent concentration of a solution
of solubilized membrane proteins is reduced (by dilution, for example), mem-
brane proteins do not remain soluble. In the presence of an excess of phospho-
lipid molecules in such a solution, however, membrane proteins incorporate into
small liposomes that form spontaneously. In this way, functionally active mem-
brane protein systems can be reconstituted from purified components, providing
a powerful means of analyzing the activities of membrane transporters, ion chan-
nels, signaling receptors, and so on (Figure 10-28). Such functional reconstitu-
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Figure 10-27 Solubilizing a membrane

The detergent disrupts the lipid bilayer
and brings the protein into solution as
protein-lipid—detergent complexes. The
phospholipids in the membrane are also
solubilized by the detergent, as lipid-
detergent micelles.
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Figure 10-28 The use of mild nonionic
detergents for solubilizing, purifying,
and reconstituting functional membrane
protein systems. In this example,
functional Na*-K* pump molecules are
purified and incorporated into phospholipid
vesicles. This pump is present in the
plasma membrane of most animal cells,
where it uses the energy of ATP hydrolysis
to pump Na* out of the cell and K* in, as
discussed in Chapter 11.
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protein with a mild nonionic detergent.
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ATP (ATP synthases) use H* gradients in mitochondrial, chloroplast, and bacterial
membranes to produce ATP.

Membrane proteins can also be reconstituted from detergent solution into
nanodiscs, which are small, uniformly sized patches of membrane that are sur-
rounded by a belt of protein, which covers the exposed edge of the bilayer to keep
the patch in solution (Figure 10-29). The belt is derived from high-density lipo-
proteins (HDL), which keep lipids soluble for transport in the blood. In nanodiscs
the membrane protein of interest can be studied in its native lipid environment
and is experimentally accessible from both sides of the bilayer, which is useful,
for example, for ligand-binding experiments. Proteins contained in nanodiscs can
also be analyzed by single particle electron microscopy techniques to determine
their structure. By this rapidly improving technique (discussed in Chapter 9), the
structure of a membrane protein can be determined to high resolution without a
requirement of the protein of interest to crystallize into a regular lattice, which is
often hard to achieve for membrane proteins.

Detergents have also played a crucial part in the purification and crystalliza-
tion of membrane proteins. The development of new detergents and new expres-
sion systems that produce large quantities of membrane proteins from cDNA
clones has led to a rapid increase in the number of three-dimensional structures
of membrane proteins and protein complexes that are known, although they are
still few compared to the known structures of water-soluble proteins and protein
complexes.

Bacteriorhodopsin Is a Light-driven Proton (H*) Pump That
Traverses the Lipid Bilayer as Seven a Helices

In Chapter 11, we consider how multipass transmembrane proteins mediate
the selective transport of small hydrophilic molecules across cell membranes.
But a detailed understanding of how such a membrane transport protein works
requires precise information about its three-dimensional structure in the bilayer.
Bacteriorhodopsin was the first membrane transport protein whose structure was
determined, and it has remained the prototype of many multipass membrane
proteins with a similar structure.

The “purple membrane” of the archaeon Halobacterium salinarum is a spe-
cialized patch in the plasma membrane that contains a single species of pro-
tein molecule, bacteriorhodopsin (Figure 10-30A). The protein functions as
a light-activated H* pump that transfers H* out of the archaeal cell. Because
the bacteriorhodopsin molecules are tightly packed and arranged as a planar
two-dimensional crystal (FIgure 10-30B and C), it was possible to determine
their three-dimensional structure by combining electron microscopy and elec-
tron diffraction analysis—a procedure called electron crystallography, which we

Figure 10-29 Model of a membrane
protein reconstituted into a

nanodisc. When detergent is removed
from a solution containing a multipass
membrane protein, lipids, and a protein
subunit of the high-density lipoprotein
(HDL), the membrane protein becomes
embedded in a small patch of lipid

bilayer, which is surrounded by a belt of
the HDL protein. In such nanodiscs, the
hydrophobic edges of the bilayer patch are
shielded by the protein belt, which renders
the assembly water-soluble.
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mentioned earlier. This method has provided the first structural views of many
membrane proteins that were found to be difficult to crystallize from detergent
solutions. For bacteriorhodopsin, the structure was later confirmed and extended
to very high resolution by x-ray crystallography.

Each bacteriorhodopsin molecule is folded into seven closely packed trans-
membrane o helices and contains a single light-absorbing group, or chromophore
(in this case, retinal), which gives the protein its purple color. Retinal is vitamin A
in its aldehyde form and is identical to the chromophore found in rhodopsin of
the photoreceptor cells of the vertebrate eye (discussed in Chapter 15). Retinal is
covalently linked to a lysine side chain of the bacteriorhodopsin protein. When
activated by a single photon of light, the excited chromophore changes its shape
and causes a series of small conformational changes in the protein, resulting in
the transfer of one H* from the inside to the outside of the cell (Figure 10-31A). In
brightlight, each bacteriorhodopsin molecule can pump several hundred protons
per second. The light-driven proton transfer establishes an H* gradient across
the plasma membrane, which in turn drives the production of ATP by a second
protein in the cell’s plasma membrane. The energy stored in the H* gradient also
drives other energy-requiring processes in the cell. Thus, bacteriorhodopsin con-
verts solar energy into a H* gradient, which provides energy to the archaeal cell.

The high-resolution crystal structure of bacteriorhodopsin reveals many
lipid molecules bound in specific places on the protein surface (Figure 10-31B).

EXTRA-
CELLULAR U
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core of
lipid bilayer
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Figure 10-30 Patches of purple
membrane, which contain
bacteriorhodopsin in the archaeon
Halobacterium salinarum. (A) These
archaea live in saltwater pools, where

they are exposed to sunlight. They have
evolved a variety of light-activated proteins,
including bacteriorhodopsin, which is a
light-activated H* pump in the plasma
membrane. (B) The bacteriorhodopsin
molecules in the purple membrane patches
are tightly packed into two-dimensional
crystalline arrays. (C) Details of the
molecular surface visualized by atomic
force microscopy. With this technique,
individual bacteriorhodopsin molecules can
be seen. (D) Outline of the approximate
location of the bacteriorhodopsin monomer
and the individual a helices in the image
shown in (C). (B-C, courtesy of Dieter
Oesterhelt; D, PDB code: 2BRD.)

Figure 10-31 The three-dimensional
structure of a bacteriorhodopsin
molecule. (Movie 10.5) (A) The
polypeptide chain crosses the lipid bilayer
seven times as a helices. The location of
the retinal chromophore (purple) and the
probable pathway taken by H* during the
light-activated pumping cycle are shown.
The first and key step is the passing of an
H* from the chromophore to the side chain
of aspartic acid 85 (red, located next to the
chromophore) that occurs upon absorption
of a photon by the chromophore.
Subsequently, other H* transfers—in the
numerical order indicated and utilizing the
hydrophilic amino acid side chains that line
a path through the membrane —complete
the pumping cycle and return the enzyme
to its starting state. Color code: glutamic
acid (orange), aspartic acid (red), arginine
(blue). (B) The high-resolution crystal
structure of bacteriorhodopsin shows
many lipid molecules (yellow with red head
groups) that are tightly bound to specific
places on the surface of the protein.

(A, adapted from H. Luecke et al., Science
286:255-261, 1999. With permission from
AAAS; B, from H. Luecke et al., J. Mol.
Biol. 291:899-911, 1999. With permission
from Academic Press.)
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Interactions with specific lipids are thought to help stabilize many membrane
proteins, which work best and sometimes crystallize more readily if some of the
lipids remain bound during detergent extraction, or if specific lipids are added
back to the proteins in detergent solutions. The specificity of these lipid-protein
interactions helps explain why eukaryotic membranes contain such a variety of
lipids, with head groups that differ in size, shape, and charge. We can think of the
membrane lipids as constituting a two-dimensional solvent for the proteins in the
membrane, just as water constitutes a three-dimensional solvent for proteins in
an aqueous solution: some membrane proteins can function only in the presence
of specific lipid head groups, just as many enzymes in aqueous solution require a
particular ion for activity.

Bacteriorhodopsin is a member of a large superfamily of membrane proteins
with similar structures but different functions. For example, rhodopsin in rod cells
of the vertebrate retina and many cell-surface receptor proteins that bind extracel-
lular signal molecules are also built from seven transmembrane o helices. These
proteins function as signal transducers rather than as transporters: each responds
to an extracellular signal by activating a GTP-binding protein (G protein) inside the
cell and they are therefore called G-protein-coupled receptors (GPCRs), as we dis-
cuss in Chapter 15 (see Figure 15-6B). Although the structures of bacteriorhodop-
sins and GPCRs are strikingly similar, they show no sequence similarity and thus
probably belong to two evolutionarily distant branches of an ancient protein family.
A related class of membrane proteins, the channelrhodopsins that green algae use
to detectlight, form ion channels when they absorb a photon. When engineered so
that they are expressed in animal brains, these proteins have become invaluable
tools in neurobiology because they allow specific neurons to be stimulated experi-
mentally by shining light on them, as we discuss in Chapter 11 (Figure 11-32).

Membrane Proteins Often Function as Large Complexes

Many membrane proteins function as part of multicomponent complexes, sev-
eral of which have been studied by x-ray crystallography. One is a bacterial pho-
tosynthetic reaction center, which was the first membrane protein complex to be
crystallized and analyzed by x-ray diffraction. In Chapter 14, we discuss how such
photosynthetic complexes function to capture light energy and use it to pump
H* across the membrane. Many of the membrane protein complexes involved in
photosynthesis, proton pumping, and electron transport are even larger than the
photosynthetic reaction center. The enormous photosystem II complex from cya-
nobacteria, for example, contains 19 protein subunits and well over 60 transmem-
brane helices (see Figure 14-49). Membrane proteins are often arranged in large
complexes, not only for harvesting various forms of energy, but also for transduc-
ing extracellular signals into intracellular ones (discussed in Chapter 15).

Many Membrane Proteins Diffuse in the Plane of the Membrane

Like most membrane lipids, membrane proteins do not tumble (flip-flop) across
the lipid bilayer, but they do rotate about an axis perpendicular to the plane of the
bilayer (rotational diffusion). In addition, many membrane proteins are able to
move laterally within the membrane (lateral diffusion). An experiment in which
mouse cells were artificially fused with human cells to produce hybrid cells (het-
erokaryons) provided the first direct evidence that some plasma membrane pro-
teins are mobile in the plane of the membrane. Two differently labeled antibodies
were used to distinguish selected mouse and human plasma membrane proteins.
Although at first the mouse and human proteins were confined to their own
halves of the newly formed heterokaryon, the two sets of proteins diffused and
mixed over the entire cell surface in about half an hour (Figure 10-32).

The lateral diffusion rates of membrane proteins can be measured by using
the technique of fluorescence recovery after photobleaching (FRAP). The method
usually involves marking the membrane protein of interest with a specific flu-
orescent group. This can be done either with a fluorescent ligand such as a
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fluorophore-labeled antibody that binds to the protein or with recombinant DNA
technology to express the protein fused to a fluorescent protein such as green flu-
orescent protein (GFP) (discussed in Chapter 9). The fluorescent group is then
bleached in a small area of membrane by a laser beam, and the time taken for
adjacent membrane proteins carrying unbleached ligand or GFP to diffuse into
the bleached area is measured (Figure 10-33). From FRAP measurements, we can
estimate the diffusion coefficient for the marked cell-surface protein. The values
of the diffusion coefficients for different membrane proteins in different cells are
highly variable, because interactions with other proteins impede the diffusion
of the proteins to varying degrees. Measurements of proteins that are minimally
impeded in this way indicate that cell membranes have a viscosity comparable to
that of olive oil.

One drawback to the FRAP technique is that it monitors the movement of
large populations of molecules in a relatively large area of membrane; one cannot
follow individual protein molecules. If a protein fails to migrate into a bleached
area, for example, one cannot tell whether the molecule is truly immobile or just
restricted in its movement to a very small region of membrane—perhaps by cyto-
skeletal proteins. Single-particle tracking techniques overcome this problem by
labeling individual membrane molecules with antibodies coupled to fluorescent
dyes or tiny gold particles and tracking their movement by video microscopy.
Using single-particle tracking, one can record the diffusion path of a single mem-
brane protein molecule over time. Results from all of these techniques indicate
that plasma membrane proteins differ widely in their diffusion characteristics, as
we now discuss.
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Figure 10-32 An experiment
demonstrating the diffusion of proteins
in the plasma membrane of mouse-
human hybrid cells. In this experiment,

a mouse and a human cell were fused to
create a hybrid cell, which was then stained
with two fluorescently labeled antibodies.
One antibody (labeled with a green dye)
detects mouse plasma membrane proteins,
the other antibody (labeled with a red dye)
detects human plasma membrane proteins.
When cells were stained immediately

after fusion, mouse and human plasma
membrane proteins are still found in the
membrane domains originating from the
mouse and human cell, respectively. After a
short time, however, the plasma membrane
proteins diffuse over the entire cell surface
and completely intermix. (From L.D. Frye
and M. Edidine, J. Cell Sci. 7:319-335,
1970. With permission from The Company
of Biologists.)

Figure 10-33 Measuring the rate

of lateral diffusion of a membrane
protein by fluorescence recovery after
photobleaching. A specific protein of
interest can be expressed as a fusion
protein with green fluorescent protein
(GFP), which is intrinsically fluorescent.
The fluorescent molecules are bleached
in a small area using a laser beam. The
fluorescence intensity recovers as the
bleached molecules diffuse away and
unbleached molecules diffuse into the
irradiated area (shown here in side and
top views). The diffusion coefficient

is calculated from a graph of the rate

of recovery: the greater the diffusion
coefficient of the membrane protein, the
faster the recovery (Movie 10.6).
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Cells Can Confine Proteins and Lipids to Specific Domains Within
a Membrane

The recognition that biological membranes are two-dimensional fluids was a
major advance in understanding membrane structure and function. Ithas become
clear, however, that the picture of a membrane as a lipid sea in which all proteins
float freely is greatly oversimplified. Most cells confine membrane proteins to spe-
cific regions in a continuous lipid bilayer. We have already discussed how bac-
teriorhodopsin molecules in the purple membrane of Halobacterium assemble
into large two-dimensional crystals, in which individual protein molecules are
relatively fixed in relationship to one another (see Figure 10-30). ATP synthase
complexes in the inner mitochondrial membrane also associate into long double
rows, as we discuss in Chapter 14 (see Figure 14-32). Large aggregates of this kind
diffuse very slowly.

In epithelial cells, such as those that line the gut or the tubules of the kidney,
certain plasma membrane enzymes and transport proteins are confined to the
apical surface of the cells, whereas others are confined to the basal and lateral
surfaces (Figure 10-34). This asymmetric distribution of membrane proteins is
often essential for the function of the epithelium, as we discuss in Chapter 11 (see
Figure 11-11). The lipid compositions of these two membrane domains are also
different, demonstrating that epithelial cells can prevent the diffusion of lipid as
well as protein molecules between the domains. The barriers set up by a specific
type of intercellular junction (called a tight junction, discussed in Chapter 19;
see Figure 19-18) maintain the separation of both protein and lipid molecules.
Clearly, the membrane proteins that form these intercellular junctions cannot be
allowed to diffuse laterally in the interacting membranes.

A cell can also create membrane domains without using intercellular junc-
tions. As we already discussed, regulated protein-protein interactions in mem-
branes are thought to create nanoscale raft domains that function in signaling
and membrane trafficking. A more extreme example is seen in the mammalian
spermatozoon, a single cell that consists of several structurally and functionally
distinct parts covered by a continuous plasma membrane. When a sperm cell is
examined by immunofluorescence microscopy with a variety of antibodies, each
of which reacts with a specific cell-surface molecule, the plasma membrane is
found to consist of at least three distinct domains (Figure 10-35). Some of the
membrane molecules are able to diffuse freely within the confines of their own
domain. The molecular nature of the “fence” that prevents the molecules from

protein A
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basal plasma
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Figure 10-34 How membrane molecules can be restricted to a particular membrane domain.
In this drawing of an epithelial cell, protein A (in the apical domain of the plasma membrane)

and protein B (in the basal and lateral domains) can diffuse laterally in their own domains but are
prevented from entering the other domain, at least partly by the specialized cell-cell junction called
a tight junction. Lipid molecules in the outer (extracellular) monolayer of the plasma membrane

are likewise unable to diffuse between the two domains; lipids in the inner (cytosolic) monolayer,
however, are able to do so (not shown). The basal lamina is a thin mat of extracellular matrix that
separates epithelial sheets from other tissues (discussed in Chapter 19).
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leaving their domain is not known. Many other cells have similar membrane
fences that confine membrane protein diffusion to certain membrane domains.
The plasma membrane of nerve cells, for example, contains a domain enclosing
the cell body and dendrites, and another enclosing the axon; it is thought that a
belt of actin filaments tightly associated with the plasma membrane at the cell-
body-axon junction forms part of the barrier.

Figure 10-36 shows four common ways of immobilizing specific membrane
proteins through protein-protein interactions.

The Cortical Cytoskeleton Gives Membranes Mechanical Strength
and Restricts Membrane Protein Diffusion

As shown in Figure 10-36B and C, a common way in which a cell restricts the lat-
eral mobility of specific membrane proteins is to tether them to macromolecular
assemblies on either side of the membrane. The characteristic biconcave shape of
ared blood cell (Figure 10-37), for example, results from interactions of its plasma
membrane proteins with an underlying cytoskeleton, which consists mainly of a
meshwork of the filamentous protein spectrin. Spectrin is a long, thin, flexible
rod about 100 nm in length. As the principal component of the red cell cytoskel-
eton, it maintains the structural integrity and shape of the plasma membrane,
which is the red cell’s only membrane, as the cell has no nucleus or other organ-
elles. The spectrin cytoskeleton is riveted to the membrane through various mem-
brane proteins. The final result is a deformable, netlike meshwork that covers
the entire cytosolic surface of the red cell membrane (Figure 10-38). This spec-
trin-based cytoskeleton enables the red cell to withstand the stress on its mem-
brane as it is forced through narrow capillaries. Mice and humans with genetic
abnormalities in spectrin are anemic and have red cells that are spherical (instead
of concave) and fragile; the severity of the anemia increases with the degree of
spectrin deficiency.
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Figure 10-35 Three domains in the
plasma membrane of a guinea pig
sperm. (A) A drawing of a guinea

pig sperm. (B-D) In the three pairs of
micrographs, phase-contrast micrographs
are on the /eft, and the same cell is shown
with cell-surface immunofluorescence
staining on the right. Different monoclonal
antibodies selectively label cell-surface
molecules on (B) the anterior head,

(C) the posterior head, and (D) the tail.
(Micrographs courtesy of Selena Carroll
and Diana Myles.)

(A)

(B)

(9]

(D)

Figure 10-36 Four ways of restricting
the lateral mobility of specific plasma
membrane proteins. (A) The proteins can
self-assemble into large aggregates (as
seen for bacteriorhodopsin in the purple
membrane of Halobacterium salinarum);
they can be tethered by interactions with
assemblies of macromolecules (B) outside
or (C) inside the cell; or (D) they can interact
with proteins on the surface of another cell.
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Figure 10-37 A scanning electron
micrograph of human red blood cells.
The cells have a biconcave shape and
lack a nucleus and other organelles
(Movie 10.7). (Courtesy of Bernadette
Chailley.)

An analogous but much more elaborate and highly dynamic cytoskeletal net-
work exists beneath the plasma membrane of most other cells in our body. This
network, which constitutes the cortex of the cell, is rich in actin filaments, which
are attached to the plasma membrane in numerous ways. The dynamic remod-
eling of the cortical actin network provides a driving force for many essential
cell functions, including cell movement, endocytosis, and the formation of tran-
sient, mobile plasma membrane structures such as filopodia and lamellopodia
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Figure 10-38 The spectrin-based cytoskeleton on the cytosolic side of the human

red blood cell plasma membrane. (A) The arrangement shown in the drawing has been
deduced mainly from studies on the interactions of purified proteins in vitro. Spectrin
heterodimers (enlarged in the drawing on the right) are linked together into a netlike
meshwork by “junctional complexes” (enlarged in the drawing on the left). Each spectrin
heterodimer consists of two antiparallel, loosely intertwined, flexible polypeptide chains called
o and B. The two spectrin chains are attached noncovalently to each other at multiple points,
including at both ends. Both the o and 3 chains are composed largely of repeating domains.
Two spectrin heterodimers join end-to-end to form tetramers.

The junctional complexes are composed of short actin filaments (containing 13 actin
monomers) and these proteins—band 4.1, adducin, and a tropomyosin molecule that
probably determines the length of the actin filaments. The cytoskeleton is linked to the
membrane through two transmembrane proteins—a multipass protein called band 3 and a
single-pass protein called glycophorin. The spectrin tetramers bind to some band 3 proteins y 5
via ankyrin molecules, and to glycophorin and band 3 (not shown) via band 4.1 proteins. Gl | " dctinin

(B) The electron micrograph shows the cytoskeleton on the cytosolic side of a red e S junctional
blood cell membrane after fixation and negative staining. The spectrin meshwork has been i : complex. . W
purposely stretched out to allow the details of its structure to be seen. In a normal cell, the : : i e A
meshwork shown would be much more crowded and occupy only about one-tenth of this
area. (B, courtesy of T. Byers and D. Branton, Proc. Nat/ Acad. Sci. USA 82:6153-6157,
1985. With permission from The National Academy of Sciences.)
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cortical cytoskeletal membrane Figure 10-39 Cor.ralling plas.ma
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' domains, or corrals. (B) High-speed,
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>~ start The trace shows that the individual protein
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100 nm / 1pm domain. (Adapted from A. Kusumi et
A) transmembrane (B) al., Annu. Rev. Biophys. Biomol. Struct.
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Annual Reviews.)

discussed in Chapter 16. The cortex of nucleated cells also contains proteins that
are structurally homologous to spectrin and the other components of the red cell
cytoskeleton. We discuss the cortical cytoskeleton in nucleated cells and its inter-
actions with the plasma membrane in Chapter 16.

The cortical cytoskeletal network restricts diffusion of not only the plasma
membrane proteins that are directly anchored to it. Because the cytoskeletal fila-
ments are often closely apposed to the cytosolic surface of the plasma membrane,
they can form mechanical barriers that obstruct the free diffusion of proteins in
the membrane. These barriers partition the membrane into small domains, or
corrals (Figure 10-39A), which can be either permanent, as in the sperm (see
Figure 10-35), or transient. The barriers can be detected when the diffusion of
individual membrane proteins is followed by high-speed, single-particle tracking.
The proteins diffuse rapidly but are confined within an individual corral (Figure
10-39B); occasionally, however, thermal motions cause a few cortical filaments
to detach transiently from the membrane, allowing the protein to escape into an
adjacent corral.

The extentto which a transmembrane protein is confined within a corral depends
on its association with other proteins and the size of its cytoplasmic domain; pro-
teins with a large cytosolic domain will have a harder time passing through cyto-
skeletal barriers. When a cell-surface receptor binds its extracellular signal mole-
cules, for example, large protein complexes build up on the cytosolic domain of
the receptor, making it more difficult for the receptor to escape from its corral. It is
thought that corralling helps concentrate such signaling complexes, increasing the
speed and efficiency of the signaling process (discussed in Chapter 15).

Membrane-bending Proteins Deform Bilayers

Cell membranes assume many different shapes, as illustrated by the elaborate
and varied structures of cell-surface protrusions and membrane-enclosed organ-
elles in eukaryotic cells. Flat sheets, narrow tubules, round vesicles, fenestrated
sheets, and pitta bread-shaped cisternae are all part of the repertoire: often, a vari-
ety of shapes will be present in different regions of the same continuous bilayer.
Membrane shape is controlled dynamically, as many essential cell processes—
including vesicle budding, cell movement, and cell division—require elaborate
transient membrane deformations. In many cases, membrane shape is influ-
enced by dynamic pushing and pulling forces exerted by cytoskeletal or extracel-
lular structures, as we discuss in Chapters 13 and 16). A crucial part in producing
these deformations is played by membrane-bending proteins, which control
local membrane curvature. Often, cytoskeletal dynamics and membrane-bend-
ing-protein forces work together. Membrane-bending proteins attach to specific
membrane regions as needed and act by one or more of three principal mecha-
nisms:

1. Some insert hydrophobic protein domains or attached lipid anchors into
one of the leaflets of a lipid bilayer. Increasing the area of only one leaflet
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Figure 10-40 Three ways in which membrane-bending proteins shape membranes. Lipid bilayers are blue and
proteins are green. (A) Bilayer without protein bound. (B) A hydrophobic region of the protein can insert as a wedge into
one monolayer to pry lipid head groups apart. Such regions can either be amphiphilic helices as shown or hydrophobic
hairpins. (C) The curved surface of the protein can bind to lipid head groups and deform the membrane or stabilize its
curvature. (D) A protein can bind to and cluster lipids that have large head groups and thereby bend the membrane.
(Adapted from W.A. Prinz and J.E. Hinshaw, Crit. Rev. Biochem. Mol. Biol. 44:278-291, 2009.)

causes the membrane to bend (Figure 10-40B). The proteins that shape the
convoluted network of narrow ER tubules are thought to work in this way.

2. Some membrane-bending proteins form rigid scaffolds that deform the
membrane or stabilize an already bent membrane (Figure 10-40C). The
coat proteins that shape the budding vesicles in intracellular transport fall
into this class.

3. Some membrane-bending proteins cause particular membrane lipids
to cluster together, thereby inducing membrane curvature. The ability of
a lipid to induce positive or negative membrane curvature is determined
by the relative cross-sectional areas of its head group and its hydrocarbon
tails. For example, the large head group of phosphoinositides make these
lipid molecules wedge-shaped, and their accumulation in a domain of one
leaflet of a bilayer therefore induces positive curvature (Figure 10-40D). By
contrast, phospholipases that remove lipid head groups produce inversely
shaped lipid molecules that induce negative curvature.

Often, different membrane-bending proteins collaborate to achieve a particular
curvature, as in shaping a budding transport vesicle, as we discuss in Chapter 13.

Summary

Whereas the lipid bilayer determines the basic structure of biological membranes,
proteins are responsible for most membrane functions, serving as specific recep-
tors, enzymes, transporters, and so on. Transmembrane proteins extend across the
lipid bilayer. Some of these membrane proteins are single-pass proteins, in which
the polypeptide chain crosses the bilayer as a single a helix. Others are multipass
proteins, in which the polypeptide chain crosses the bilayer multiple times—either
as a series of a helices or as a f§ sheet rolled up into the shape of a barrel. All pro-
teins responsible for the transport of ions and other small water-soluble molecules
through the membrane are multipass proteins. Some membrane proteins do not
span the bilayer but instead are attached to either side of the membrane: some are
attached to the cytosolic side by an amphipathic a helix on the protein surface or by
the covalent attachment of one or more lipid chains, others are attached to the non-
cytosolic side by a GPI anchor. Some membrane-associated proteins are bound by
noncovalent interactions with transmembrane proteins. In the plasma membrane
of all eukaryotic cells, most of the proteins exposed on the cell surface and some of
the lipid molecules in the outer lipid monolayer have oligosaccharide chains cova-
lently attached to them. Like the lipid molecules in the bilayer, many membrane
proteins are able to diffuse rapidly in the plane of the membrane. However, cells
have ways of immobilizing specific membrane proteins, as well as ways of confining
both membrane protein and lipid molecules to particular domains in a continuous
lipid bilayer. The dynamic association of membrane-bending proteins confers on
membranes their characteristic three-dimensional shapes.

WHAT WE DON’T KNOW

e Given the highly complex lipid
composition of cell membranes,
what are the variations within
different organelle membranes in an
animal cell? What are the functional
consequences of these differences,
and what are the roles of the minor
lipid species?

e |s the biophysical tendency of lipids
to partition into separate phases within
a lipid bilayer functionally utilized in cell
membranes? If so, how is it regulated
and what membrane functions does it
control?

e How commonly do specific lipid
molecules associate with membrane
proteins to regulate their function?

e Given that the structure of only a tiny
fraction of all membrane proteins has
been determined, what new principles
of membrane protein structure remain
to be discovered?



CHAPTER 10 END-OF-CHAPTER PROBLEMS

PROBLEMS

Which statements are true? Explain why or why not.

10-1  Although lipid molecules are free to diffuse in the
plane of the bilayer, they cannot flip-flop across the bilayer
unless enzyme catalysts called phospholipid translocators
are present in the membrane.

10-2 Whereas all the carbohydrate in the plasma mem-
brane faces outward on the external surface of the cell, all
the carbohydrate on internal membranes faces toward the
cytosol.

10-3 Although membrane domains with different pro-
tein compositions are well known, there are at present no
examples of membrane domains that differ in lipid com-
position.

Discuss the following problems.

10-4 When a lipid bilayer is torn, why does it not seal
itself by forming a “hemi-micelle” cap at the edges, as
shown in Figure Q10-1?

tear in bilayer
I 000 00000000000 0000000000000 0

seal with hemi-micelle cap

0000000000000 ° ® 0000000000000 E———

Figure Q10-1 A torn lipid bilayer sealed with a hypothetical “hemi-
micelle” cap (Problem 10-4).

10-5 Margarine is made from vegetable oil by a chem-
ical process. Do you suppose this process converts satu-
rated fatty acids to unsaturated ones, or vice versa? Explain
your answer.

10-7 Monomeric single-pass transmembrane proteins
span a membrane with a single a helix that has character-
istic chemical properties in the region of the bilayer. Which
of the three 20-amino-acid sequences listed below is the
most likely candidate for such a transmembrane segment?
Explain the reasons for your choice. (See back of book for
one-letter amino acid code; FAMILY VW is a convenient
mnemonic for hydrophobic amino acids.)

A. ITLIYFGVMAGVIGTILLTIS
B. ITPIYFGPMAGVIGTPLLTIS
C. ITEIYFGRMAGVIGTDLTLTIS
10-6 If a lipid raft is typically 70 nm in diameter and

each lipid molecule has a diameter of 0.5 nm, about how
many lipid molecules would there be in a lipid raft com-
posed entirely of lipid? At a ratio of 50 lipid molecules
per protein molecule (50% protein by mass), how many
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proteins would be in a typical raft? (Neglect the loss of lipid
from the raft that would be required to accommodate the
protein.)

10-8 You are studying the binding of proteins to the
cytoplasmic face of cultured neuroblastoma cells and
have found a method that gives a good yield of inside-out
vesicles from the plasma membrane. Unfortunately, your
preparations are contaminated with variable amounts of
right-side-out vesicles. Nothing you have tried avoids this
problem. A friend suggests that you pass your vesicles over
an affinity column made of lectin coupled to solid beads.
What is the point of your friend’s suggestion?

10-9 Glycophorin, a protein in the plasma membrane
of the red blood cell, normally exists as a homodimer that
is held together entirely by interactions between its trans-
membrane domains. Since transmembrane domains are
hydrophobic, how is it that they can associate with one
another so specifically?

10-10 Three mechanisms by which membrane-bind-
ing proteins bend a membrane are illustrated in Figure
Q10-2A, B, and C. As shown, each of these cytosolic mem-
brane-bending proteins would induce an invagination of
the plasma membrane. Could similar kinds of cytosolic
proteins induce a protrusion of the plasma membrane
(Figure Q10-2D)? Which ones? Explain how they might
work.
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Figure Q10-2 Bending of the plasma membrane by cytosolic proteins
(Problem 10-10). (A) Insertion of a protein “finger” into the cytosolic
leaflet of the membrane. (B) Binding of lipids to the curved surface of
a membrane-binding protein. (C) Binding of membrane proteins to
membrane lipids with large head groups. (D) A segment of the plasma
membrane showing a protrusion.
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